Çarpanlarına ayırma
ÇARPANLARINA AYIRMA
A. ORTAK ÇARPAN PARANTEZİNE ALMA
A(x) . B(x) ± A(x) . C(x) = A(x) . [B(x) ± C(x)]
En az dört terimi olan ifadeler ortak çarpan parantezine alınacak biçimde gruplandırılır, sonra ortak çarpan parantezine alınır.,
B. ÖZDEŞLİKLER
1. İki Kare Farkı - Toplamı
i. a2?b2=(a?b)(a+b)
ii. a2+b2=(a+b)2?2ab ya da
a2+b2=(a?b)2+2ab dir.
2. İki Küp Farkı - Toplamı
i. a3?b3=(a?b)(a2+ab+b2)
ii. a3+b3=(a+b)(a2?ab+b2)
iii. a3?b3=(a?b)3+3ab(a?b)
iv. a3+b3=(a+b)3?3ab(a+b)
3. n. Dereceden Farkı - Toplamı
i) n bir sayma sayısı olmak üzere,
xn ? yn = (x ? y) (xn ? 1 + xn ? 2 y + xn ? 3 y2 + ... + xyn ? 2 + yn ? 1) dir.
ii) n bir tek sayma sayısı olmak üzere,
xn + yn = (x + y) (xn ? 1 ? xn ? 2y + xn ? 3 y2 ? ... ? xyn ? 2 + yn ? 1) dir.
4. Tam Kare İfadeler
i. (a + b)2 = a2 + 2ab + b2
ii. (a ? b)2 = a2 ? 2ab + b2
iii. (a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc)
iv. (a + b ? c)2 = a2 + b2 + c2 + 2(ab ? ac ? bc)
n bir tam sayı olmak üzere,
(a ? b)2n = (b ? a)2n
(a ? b)2n ? 1 = ? (b ? a)2n ? 1 dir.,
(a + b)2 = (a ? b)2 + 4ab
5. (a ± b)n nin Açılımı
Pascal Üçgeni
(a + b)n açılımı yapılırken, önce a nın n . kuvvetten başlayarak azalan, b nin 0 dan başlayarak artan kuvvetlerinin çarpımları yazılıp toplanır.
Sonra n nin Paskal üçgenindeki karşılığı bulunarak katsayılar belirlenir.
(a ? b)n yukarıdaki biçimde yapılır ancak b nin; çift kuvvetlerinde terimin önüne (+), tek kuvvetlerinde terimin önüne (? işareti konulur.
(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a ? b)3 = a3 ? 3a2b + 3ab2 ? b3
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 +b4
(a ? b)4 = a4 ? 4a3b + 6a2b2 ? 4ab3 + b4
C. ax2 + bx + c Biçimindeki Üç Terimlisinin Çarpanlarına Ayrılması
1. a = 1 için,
b = m + n ve c = m . n olmak üzere,
x2 + bx + c = (x + m) (x + n) dir.